Genetic characterization of insertion sequence ISJP4 on plasmid pJP4 from Ralstonia eutropha JMP134.
نویسندگان
چکیده
Directly adjacent to the (tfdT-) tfdCDEF gene cluster for chlorocatechol breakdown on plasmid pJP4 of Ralstonia eutropha (formerly Alcaligenes eutrophus) JMP134, we identified a 0.9-kb DNA element, designated ISJP4, with the typical features of a bacterial insertion sequence. ISJP4 occurs as a single complete copy on plasmid pJP4. About 9 kb away from this copy, in the tfdA-tfdS intergenic region, we found a 71-bp duplication of the ISJP4 right-hand extremity. In addition, we discovered a complete copy of ISJP4 on the chromosome of the R. eutropha JMP134 strain that we use routinely in our laboratory. We suppose that this copy resulted from a recent transposition of the plasmid-borne ISJP4, since it was shown to be lacking from the chromosomes of R. eutropha JMP222 and JMP289, two previously pJP4-cured derivatives of JMP134. By comparing both complete copies and their flanking regions, we could establish that element ISJP4 has a size of 915 bp and is bordered by 18-bp inverted repeats with one mismatch. Based on sequence similarity of its coding regions, ISJP4 could be classified into the IS5 group of the IS4 family of bacterial insertion sequences, where it is mostly related to IS402 of Burkholderia cepacia. A TAA direct repeat, presumably resulting from a duplication of the target site, flanked the chromosomal copy of ISJP4. We could demonstrate that a piece of DNA that is flanked by two complete copies of ISJP4 can be transposed. Even more so, one complete ISJP4 plus its tfdA-tfdS intergenic remnant were sufficient to mediate transposition of intervening DNA. A possible role of ISJP4 in the formation of the tfd pathway genes will be discussed.
منابع مشابه
Molecular characterization of a deletion/duplication rearrangement in tfd genes from Ralstonia eutropha JMP134(pJP4) that improves growth on 3-chlorobenzoic acid but abolishes growth on 2,4-dichlorophenoxyacetic acid.
Ralstonia eutropha JMP134(pJP4) is able to grow on minimal media containing the pollutants 3-chlorobenzoate (3-CB) or 2,4-dichlorophenoxyacetate (2,4-D). tfd genes from the 88 kb plasmid pJP4 encode enzymes involved in the degradation of these compounds. During growth of strain JMP134 in liquid medium containing 3-CB, a derivative strain harbouring a approximately 95 kb plasmid was isolated. Th...
متن کاملCharacterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4).
Within the 5.9-kb DNA region between the tfdR and tfdK genes on the 2,4-dichlorophenoxyacetic acid (2,4-D) catabolic plasmid pJP4 from Ralstonia eutropha JMP134, we identified five open reading frames (ORFs) with significant homology to the genes for chlorocatechol and chlorophenol metabolism (tfdCDEF and tfdB) already present elsewhere on pJP4. The five ORFs were organized and assigned as foll...
متن کاملThe tfdR gene product can successfully take over the role of the insertion element-inactivated TfdT protein as a transcriptional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134(pJP4)
The tfdT gene is located upstream of and transcribed divergently from the tfdCDEF chlorocatechol-degradative operon on plasmid pJP4 of Ralstonia eutropha (formerly Alcaligenes eutrophus) JMP134. It is 684 bp long and encodes a 25-kDa protein. On the basis of its predicted amino acid sequence, the TfdT protein could be classified as a LysR-type transcriptional regulator. It has the highest degre...
متن کاملThe tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4).
Uptake of 2,4-dichlorophenoxyacetate (2,4-D) by Ralstonia eutropha JMP134(pJP4) was studied and shown to be an energy-dependent process. The uptake system was inducible with 2,4-D and followed saturation kinetics in a concentration range of up to 60 microM, implying the involvement of a protein in the transport process. We identified an open reading frame on plasmid pJP4, which was designated t...
متن کاملChemotaxis of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate.
Ralstonia eutropha JMP134(pJP4) and several other species of motile bacteria can degrade the herbicide 2,4-dichlorophenoxyacetate (2,4-D), but it was not known if bacteria could sense and swim towards 2,4-D by the process of chemotaxis. Wild-type R. eutropha cells were chemotactically attracted to 2,4-D in swarm plate assays and qualitative capillary assays. The chemotactic response was induced...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 202 1-2 شماره
صفحات -
تاریخ انتشار 1997